Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
Nat Commun ; 13(1): 557, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091576

RESUMO

MATα1 catalyzes the synthesis of S-adenosylmethionine, the principal biological methyl donor. Lower MATα1 activity and mitochondrial dysfunction occur in alcohol-associated liver disease. Besides cytosol and nucleus, MATα1 also targets the mitochondria of hepatocytes to regulate their function. Here, we show that mitochondrial MATα1 is selectively depleted in alcohol-associated liver disease through a mechanism that involves the isomerase PIN1 and the kinase CK2. Alcohol activates CK2, which phosphorylates MATα1 at Ser114 facilitating interaction with PIN1, thereby inhibiting its mitochondrial localization. Blocking PIN1-MATα1 interaction increased mitochondrial MATα1 levels and protected against alcohol-induced mitochondrial dysfunction and fat accumulation. Normally, MATα1 interacts with mitochondrial proteins involved in TCA cycle, oxidative phosphorylation, and fatty acid ß-oxidation. Preserving mitochondrial MATα1 content correlates with higher methylation and expression of mitochondrial proteins. Our study demonstrates a role of CK2 and PIN1 in reducing mitochondrial MATα1 content leading to mitochondrial dysfunction in alcohol-associated liver disease.


Assuntos
Hepatopatias Alcoólicas/metabolismo , Metionina Adenosiltransferase/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Western Blotting , Caseína Quinase II/metabolismo , Linhagem Celular , Etanol/farmacologia , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias Alcoólicas/enzimologia , Metionina Adenosiltransferase/genética , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Mutação , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Ligação Proteica
2.
Acta Pharmacol Sin ; 42(7): 1101-1110, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33028983

RESUMO

Alcoholic liver disease (ALD) is one of the pathogenic factors of chronic liver disease with the highest clinical morbidity worldwide. Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid, has shown many health benefits including antioxidative, anti-inflammatory, anticancer, and hepatoprotective activities. We previously found that UA was metabolized in vivo into epoxy-modified UA containing an epoxy electrophilic group and had the potential to react with nucleophilic groups. In this study we prepared an alkynyl-modified UA (AM-UA) probe for tracing and capturing the target protein of UA from liver in mice, then investigated the mode by which UA bound to its target in vivo. By conducting proteome identification and bioinformatics analysis, we identified caspase-3 (CASP3) as the primary target protein of UA associated with liver protection. Molecule docking analysis showed that the epoxy group of the UA metabolite reacted with Cys-163 of CASP3, forming a covalent bond with CASP3. The binding mode of the UA metabolites (UA, CM-UA, and EM-UA) was verified by biochemical evaluation, demonstrating that the epoxy group produced by metabolism played an important role in the inhibition of CASP3. In alcohol-treated HepG2 cells, pretreatment with the UA metabolite (10 µM) irreversibly inhibited CASP3 activities, and subsequently decreased the cleavage of PARP and cell apoptosis. Finally, pre-administration of UA (20-80 mg· kg-1 per day, ig, for 1 week) dose-dependently alleviated alcohol-induced liver injury in mice mainly via the inhibition of CASP3. In conclusion, this study demonstrates that UA is a valuable lead compound for the treatment of ALD.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Inibidores de Caspase/uso terapêutico , Hepatopatias Alcoólicas/tratamento farmacológico , Fígado/efeitos dos fármacos , Triterpenos/uso terapêutico , Sequência de Aminoácidos , Animais , Caspase 3/química , Inibidores de Caspase/metabolismo , Cisteína/química , Compostos de Epóxi/química , Compostos de Epóxi/uso terapêutico , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/enzimologia , Fígado/patologia , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Alinhamento de Sequência , Triterpenos/metabolismo
3.
Chem Commun (Camb) ; 56(75): 11102-11105, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32812955

RESUMO

A probe has been developed for imaging alcoholic liver injury through detecting the overexpressed cytochrome P450 reductase in hypoxia in the hepatic region. Upon response to the enzyme, the activated probe displays turn-on fluorescence and near-infrared absorption and generates prominent optoacoustic signals.


Assuntos
Corantes Fluorescentes/química , Hepatopatias Alcoólicas/diagnóstico por imagem , NADPH-Ferri-Hemoproteína Redutase/análise , Imagem Óptica , Técnicas Fotoacústicas , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Humanos , Hepatopatias Alcoólicas/enzimologia , Camundongos , Estrutura Molecular , NADPH-Ferri-Hemoproteína Redutase/metabolismo
4.
Drug Chem Toxicol ; 43(5): 546-551, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31094237

RESUMO

Alcohol is the most abused psychoactive substance and known hepatotoxicant. Present study elucidates possible therapeutic effect of oral alpha-ketoglutarate (AKG) supplementation against alcohol induced hepatic dysfunction, using biochemical, histopathological and most importantly, in vivo functional imaging approaches. Animals were divided into three groups of 6 animals each. Group-I (control): Normal saline; Group-II: 20% (v/v) solution of ethanol (5 ml/day) intragastrically using oral gavage for 2 months. Group-III: ethanol treatment as in group-II along with AKG supplementation (2g/kg/bw; intragastrically using oral gavage for 2 months). In vivo hepatobiliary scintigraphy was performed in all animals using 99mTc-mebrofenin (99mTc-MEB) as radiotracer to determine changes in (a) Hepatic extraction fraction (HEF), for quantification of radiotracer uptake, (b) Time to reach maximum hepatic uptake (Tpeak), and (c) Time for hepatic uptake to reduce by 50% (T1/2peak). Biochemical (alanine aminotransferase, aspartate aminotransferase, reduced glutathione, superoxide dismutase, catalase, and lipid peroxidation) and histological parameters were also studied. Hepatic uptake and excretion kinetics using 99mTc-MEB scintigraphy showed prompt 99mTc-MEB clearance from liver in control group (HEF: 91.26 ± 2.32; Tpeak: 143 ± 23 sec; T1/2peak: 434 ± 41 sec), while it was significantly abnormal in ethanol group and showed less efficient radiotracer accumulation (HEF: 62.72 ± 5.6; Tpeak: 201 ± 33 sec; T1/2peak: 542 ± 52 sec). Supplementation of AKG along with ethanol significantly improved liver function (HEF: 76.42 ± 5.3; Tpeak: 155 ± 34 sec; T1/2peak: 455 ± 22 sec). Biochemical and histopathology parameters were correlative to findings of functional imaging study. Results strongly indicate hepatoprotective potential of AKG against alcohol-induced hepatic injury. Study further proposes the use of in vivo hepatobiliary scintigraphy for high throughput screening of other hepatoprotectants.


Assuntos
Etanol/toxicidade , Ácidos Cetoglutáricos/uso terapêutico , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Alanina Transaminase/análise , Animais , Aspartato Aminotransferases/análise , Modelos Animais de Doenças , Ácidos Cetoglutáricos/farmacologia , Fígado/enzimologia , Hepatopatias Alcoólicas/enzimologia , Masculino , Cintilografia , Ratos , Ratos Sprague-Dawley
6.
Dig Liver Dis ; 51(8): 1154-1163, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31003959

RESUMO

Alcoholic liver disease (ALD) is one of the most common liver diseases worldwide. However, the exact mechanisms underlying ALD remain unclear. Previous studies reported that sphingosine kinase 2 (SphK2) plays an essential role in regulating hepatic lipid metabolism. In the current study, we demonstrate that compared to wild-type (WT) mice, SphK2 deficient (SphK2-/-) mice exhibited a greater degree of liver injury and hepatic lipid accumulation after feeding with an alcohol diet for 60 days. This is accompanied by a down-regulation of steroid 7-alpha-hydroxylase (Cyp7b1) and an up-regulation of pro-inflammatory mediators (Tnfα, F4/80, Il-1ß). In vitro experiments showed that alcohol induced SphK2 expression in mouse primary hepatocytes and cultured mouse macrophages. Furthermore, alcohol feeding induced a more severe intestinal barrier dysfunction in SphK2-/- mice than WT mice. Deficiency of SphK2 impaired the growth of intestinal organoids. Finally, SphK2 expression levels were down-regulated in the livers of human patients with alcoholic cirrhosis and hepatocellular carcinoma compared to healthy controls. In summary, these findings suggest that SphK2 is a crucial regulator of hepatic lipid metabolism and that modulating the SphK2-mediated signaling pathway may represent a novel therapeutic strategy for the treatment of ALD and other metabolic liver diseases.


Assuntos
Hepatopatias Alcoólicas/enzimologia , Fígado/enzimologia , Fígado/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Células Cultivadas , Feminino , Hepatócitos/enzimologia , Humanos , Intestinos/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Esteroide Hidroxilases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
7.
Alcohol ; 79: 71-79, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30611703

RESUMO

BACKGROUND: We previously reported that nanoformulated copper/zinc superoxide dismutase (Nano) attenuates non-alcoholic fatty liver disease and adipose tissue (AT) inflammation in obese animals. Here, we sought to determine whether Nano treatment attenuates alcohol-associated liver disease (AALD) and AT inflammation in alcohol-fed mice. METHODS: We pre-treated E-47 cells (HepG2 cells that over-express CYP2E1) with native- or nano-superoxide dismutase (SOD) for 6 h, followed by treatment with ethanol and/or linoleic acid (LA), a free fatty acid. For in vivo studies, male C57BL/6 mice were fed the Lieber-DeCarli control or ethanol liquid diet for 4 weeks. The mice received Nano once every 2 days during the last 2 weeks of ethanol feeding. RESULTS: Our in vitro studies revealed that Nano pretreatment reduced LA + ethanol-induced oxidative stress in E-47 cells. Our in vivo experiments showed that ethanol-fed Nano-treated mice had 22% lower hepatic triglyceride levels than mice fed ethanol alone. Nano-treated ethanol-fed mice also had 2-fold lower levels of Cd68 and similarly reduced levels of Ccl2 and Mmp12 mRNAs, than in untreated ethanol-fed mice. We also noted that ethanol feeding caused a remarkable increase in hepatic and/or plasma MCP-1 and CCR2 protein, which was blunted in ethanol + Nano-treated animals. The hepatic content of SREBP-1c, a transcription factor that promotes lipogenesis, was higher in ethanol-fed mice than controls but was attenuated in ethanol + Nano-treated animals. Further, livers of ethanol + Nano-treated mice had significantly higher levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) than both control and ethanol-fed mice. In AT, the levels of Il6 mRNA, a hepatoprotective cytokine, and that of Arg1, a marker of anti-inflammatory macrophages, were significantly increased in ethanol + Nano-treated mice compared with control mice. CONCLUSION: Our data indicate that Nano treatment attenuates ethanol-induced steatohepatitis and that this effect is associated with an apparent activation of AMPK signaling. Our data also suggest that Nano induces Arg1 and Il6 expression in AT, suggesting anti-inflammatory effects in this tissue.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Etanol/efeitos adversos , Sequestradores de Radicais Livres/farmacologia , Inflamação/enzimologia , Hepatopatias Alcoólicas/enzimologia , Fígado/efeitos dos fármacos , Superóxido Dismutase/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Quimiocina CCL2/metabolismo , Citocromo P-450 CYP2E1/genética , Composição de Medicamentos , Expressão Gênica , Células Hep G2 , Humanos , Metabolismo dos Lipídeos , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas , Estresse Oxidativo , Proteínas Quinases/metabolismo , Receptores CCR2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
8.
Med Sci Monit ; 24: 8372-8382, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30457983

RESUMO

BACKGROUND Excessive alcohol consumption can cause hepatocellular injury. ATPase II (ATP8A1) can display an ATP-dependent phospholipid translocase activity. However, the function of ATP8A1 in hepatocyte injury is still unclear. In the present study we explored the effect of ATP8A1 on ethanol-induced hepatocyte injury. MATERIAL AND METHODS A human hepatocyte strain, HL-7702, was pretreated by ethanol with gradient concentration for 2, 4, 8, and 12 h, and were then divided into 6 groups after the cells were transfected. We detected cell viability by use of the Cell Counting Kit-8 (CCK-8) assay. Reactive oxygen species (ROS), apoptosis rate, and mitochondrial membrane potential (MMP) were measured using flow cytometry. We used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot to measure the mRNA and protein expression, respectively. RESULTS Ethanol inhibited the viability of HL-7702 cells and suppressed the expression of ATP8A1 in dose- and time-dependent manners. Furthermore, over-expression of ATP8A1 reduced the level of ROS and the apoptosis rate and recovered the MMP. Additionally, over-expressed ATP8A1 regulated the protein and mRNA levels of apoptosis-related molecules. Moreover, over-expression of ATP8A1 enhanced the phosphorylation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt). CONCLUSIONS Over-expression of ATP8A1 alleviated ethanol-induced hepatocyte injury. Moreover, the PI3K/Akt signaling pathway appears to participate in inhibition of ethanol-induced hepatocyte apoptosis and may provide a candidate target for the treatment of alcoholic liver diseases (ALD).


Assuntos
Adenosina Trifosfatases/biossíntese , Etanol/toxicidade , Fígado/efeitos dos fármacos , Fígado/enzimologia , Proteínas de Transferência de Fosfolipídeos/biossíntese , Adenosina Trifosfatases/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Cell Mol Life Sci ; 75(17): 3143-3157, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947925

RESUMO

Alcoholic liver disease (ALD) remains to be a worldwide health problem. It is generally accepted that oxidative stress plays critical roles in the pathogenesis of ALD, and antioxidant therapy represents a logical strategy for the prevention and treatment of ALD. Nuclear factor erythroid-derived 2-like 2 (NFE2L2 or Nrf-2) is essential for the antioxidant responsive element (ARE)-mediated induction of endogenous antioxidant enzymes such as heme oxygenase 1 (HO-1) and glutamate-cysteine ligase [GCL, the rate-limiting enzyme in the synthesis of glutathione (GSH)]. Activation of Nrf-2 pathway by genetic manipulation or pharmacological agents has been demonstrated to provide protection against ALD, which suggests that targeting Nrf-2 may be a promising approach for the prevention and treatment of ALD. Herein, we review the relevant literature about the potential hepatoprotective roles of Nrf-2 activation against ALD.


Assuntos
Antioxidantes/metabolismo , Glutationa/biossíntese , Hepatopatias Alcoólicas/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/metabolismo , Modelos Biológicos
10.
FASEB J ; 32(6): 3278-3288, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401608

RESUMO

Alcohol acts through numerous pathways leading to alcoholic liver disease (ALD). Cytochrome P450 (CYP2E1), an ethanol-inducible enzyme, metabolizes ethanol-producing toxic reactive oxygen species (ROS) and is regulated at the posttranslational level. Small ubiquitin-like modifier (SUMO)ylation is a posttranslational modification that involves the addition of SUMOs, which modulate protein stability, activity, and localization. We demonstrated that ubiquitin-conjugation enzyme 9, the SUMO-conjugating enzyme, is induced in the livers of an intragastric ethanol mouse model. Our aim is to examine whether SUMOylation could regulate ethanol-induced CYP2E1 expression in ALD and to elucidate the molecular mechanism(s). CYP2E1 and UBC9 expression in vitro and in vivo was detected by real-time PCR and immunoblotting/immunostaining. SUMOylation was assayed by mass spectrometry and coimmunoprecipitation. Ubc9 expression was induced in ethanol-fed mouse livers, and silencing inhibited ethanol-mediated CYP2E1 microsomal retention and enzymatic activity. CYP2E1 SUMOylation was found to be induced by ethanol in vitro and in vivo. Ubc9 silencing prevents ethanol-induced lipid accumulation and ROS production. UBC9 was highly expressed in human ALD livers. Finally, we found that lysine 410 is a key SUMOylated residue contributing to CYP2E1 protein stability and activity preventing CYP2E1 SUMOylation. Ethanol-mediated up-regulation of CYP2E1 via SUMOylation enhancing its protein stability and activity and may have important implications in ALD.-Tomasi, M. L., Ramani, K., Ryoo, M., Cossu, C., Floris, A., Murray, B. J., Iglesias-Ara, A., Spissu, Y., Mavila, N. SUMOylation regulates cytochrome P450 2E1 expression and activity in alcoholic liver disease.


Assuntos
Citocromo P-450 CYP2E1/biossíntese , Etanol/efeitos adversos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatopatias Alcoólicas/enzimologia , Sumoilação/efeitos dos fármacos , Animais , Estabilidade Enzimática/efeitos dos fármacos , Etanol/farmacologia , Hepatopatias Alcoólicas/patologia , Camundongos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/patologia , Espécies Reativas de Oxigênio/metabolismo , Enzimas de Conjugação de Ubiquitina/biossíntese
11.
Cell Death Dis ; 8(10): e3152, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072704

RESUMO

Hepatic apoptosis is involved in the progression of alcoholic liver disease (ALD). Caspase-8, the apical initiator in death receptor-mediated apoptosis, has been implicated in acute liver injury and in non-alcoholic steatohepatitis. However, the relevance of Caspase-8 in the pathogenesis of ALD remains unclear. In the present study, we investigated the impact of Caspase-8 in human and murine alcohol-induced apoptosis and in ALD. We investigated human samples from ALD patients, primary mouse hepatocytes, and hepatocyte-specific Caspase-8 knockout (Casp8Δhepa) mice in acute and chronic models of ethanol (EtOH) administration. Caspase-8 activation was detected in liver biopsies from ALD patients, as well as in livers of wild-type (WT) mice after chronic ethanol feeding for 8 weeks using the Lieber-DeCarli model. Lack of Caspase-8 expression in Casp8Δhepa animals failed to prevent alcohol-induced liver damage and apoptosis. Instead, inhibition of Caspase-8 shifted the ethanol-induced death signals towards pronounced activation of the intrinsic, mitochondria-dependent apoptosis pathway in Casp8Δhepa livers involving enhanced release of cytochrome c, stronger Caspase-9 activation and specific morphological changes of mitochondria. In vitro and in vivo intervention using a pan-caspase inhibitor markedly attenuated alcohol-induced hepatocyte damage in a Caspase-8-independent manner. Surprisingly, EtOH-fed Casp8Δhepa mice displayed significantly attenuated steatosis and reduced hepatic triglyceride and free fatty acids content. Caspase-8 is dispensable for alcohol-induced apoptosis, but plays an unexpected role for alcohol-dependent fat metabolism. We provide evidence that simultaneous inhibition of extrinsic and intrinsic apoptosis signaling using pan-caspase inhibitors in vivo might be an optimal approach to treat alcohol-induced liver injury.


Assuntos
Caspase 8/metabolismo , Hepatopatias Alcoólicas/enzimologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Ativação Enzimática/efeitos dos fármacos , Etanol/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Knockout
12.
Exp Mol Pathol ; 102(1): 162-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28077318

RESUMO

This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism.


Assuntos
Alcoolismo/complicações , Estilo de Vida , Hepatopatias Alcoólicas/complicações , Microbiota , Hepatopatia Gordurosa não Alcoólica/complicações , Congressos como Assunto , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Hepatite Alcoólica/complicações , Hepatite Alcoólica/enzimologia , Hepatite Alcoólica/genética , Humanos , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/genética , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo Genético
13.
Curr Mol Pharmacol ; 10(3): 172-178, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26278389

RESUMO

This article reviews recent studies on CYP2E1-mediated alcoholic liver injury, the induction of CYP2A5 by alcohol and the mechanism for this upregulation, especially the permissive role of CYP2E1 in the induction of CYP2A5 by alcohol and the CYP2E1-ROS-Nrf2 pathway, and protective effects of CYP2A5 against ethanol-induced oxidative liver injury. Ethanol can induce CYP2E1, an active generator of reactive oxygen species (ROS), and CYP2E1 is a contributing factor for alcoholinduced oxidative liver injury. CYP2A5, another isoform of cytochrome P450, can also be induced by ethanol. Chronic feeding of ethanol to wild type mice increased CYP2A5 catalytic activity, protein and mRNA levels as compared to pair-fed controls. This induction was blunted in CYP2E1 knockout (cyp2e1-/-) mice but was restored when human CYP2E1 was reintroduced and expressed in cyp2e1-/- mice. Ethanol-induced CYP2E1 co-localized with CYP2A5 and preceded the elevation of CYP2A5. The antioxidants N-acetyl cysteine and vitamin C lowered the alcohol elevation of ROS and blunted the alcohol induction of CYP2A5, but not CYP2E1, suggesting ROS play a novel role in the crosstalk between CYP2E1 and CYP2A5. The antioxidants blocked the activation of Nrf2, a transcription factor known to upregulate expression of CYP2A5. When alcohol-induced liver injury was enhanced in Nrf2 knockout (Nrf2-/-) mice, alcohol elevation of CYP2A5 but not CYP2E1 was also lower in Nrf2-/- mice. CYP2A5 knockout (cyp2a5-/-) mice exhibited an enhanced alcoholic liver injury compared with WT mice as indicated by serum ALT, steatosis and necroinflammation. Alcohol-induced hyperglycemia were observed in cyp2a5-/- mice but not in WT mice.


Assuntos
Família 2 do Citocromo P450/metabolismo , Hepatopatias Alcoólicas/enzimologia , Animais , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2E1/metabolismo , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/enzimologia , Hiperglicemia/patologia , Hepatopatias Alcoólicas/patologia , Transdução de Sinais , Regulação para Cima
14.
Toxicol Lett ; 267: 1-10, 2017 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-27989594

RESUMO

Salvianolic acid B (SalB), a water-soluble polyphenol extracted from Radix Salvia miltiorrhiza, has been reported to possess many pharmacological activities. This study investigated the hepatoprotective effects of SalB in chronic alcoholic liver disease (ALD) and explored the related signaling mechanisms. In vivo, SalB treatment significantly attenuated ethanol-induced liver injury by blocking the elevation of serum aminotransferase activities and markedly decreased hepatic lipid accumulation by reducing serum and liver triglyceride (TG) and total cholesterol (TC) levels. Moreover, SalB treatment ameliorated ethanol-induced hepatic inflammation by decreasing the levels of hepatotoxic cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Importantly, SalB pretreatment significantly increased the expression of SIRT1 and downregulated the expression of inflammatory mediator C-reactive protein (CRP) and lipoprotein carbohydrate response element-binding protein (ChREBP). In vitro, SalB significantly reversed ethanol-induced down-regulation of SIRT1 and increased CRP and ChREBP expression. Interestingly, the effects of SalB on SIRT1, CRP and ChREBP were mostly abolished by treatment with either SIRT1 siRNA or EX527, a specific inhibitor of SIRT1, indicating that SalB decreased CRP and ChREBP expression by activating SIRT1. SalB exerted anti-steatotic and anti-inflammatory effects against alcoholic liver injury by inducing SIRT1-mediated inhibition of CRP and ChREBP expression.


Assuntos
Anti-Inflamatórios/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Benzofuranos/farmacologia , Proteínas de Transporte/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Fígado/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Biomarcadores/sangue , Carbazóis/farmacologia , Doença Crônica , Citocinas/metabolismo , Citoproteção , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mediadores da Inflamação/metabolismo , Fígado/enzimologia , Fígado/patologia , Hepatopatias Alcoólicas/enzimologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/patologia , Masculino , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Transfecção
15.
Alcohol Clin Exp Res ; 40(10): 2076-2084, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27575873

RESUMO

BACKGROUND: Overproduction of reactive oxygen species is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary interventions for multiple diseases including ALD. The objective of this study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. METHODS: C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol (EtOH) diet for 4 weeks with or without fisetin supplementation at 10 mg/kg/d. RESULTS: Alcohol feeding induced lipid accumulation in the liver and increased plasma alanine aminotransferase and aspartate aminotransferase activities, which were attenuated by fisetin supplementation. The EtOH concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin supplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin supplementation remarkably reduced hepatic NADPH oxidase 4 levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal levels after alcohol exposure. Alcohol-induced apoptosis and up-regulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin supplementation attenuated alcohol-induced hepatic steatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. CONCLUSIONS: This study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating EtOH clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD.


Assuntos
Suplementos Nutricionais , Etanol/efeitos adversos , Flavonoides/uso terapêutico , Hepatopatias Alcoólicas/dietoterapia , Proteínas Quinases Ativadas por AMP/metabolismo , Acil-CoA Oxidase/metabolismo , Adiponectina/sangue , Aldeído Desidrogenase/metabolismo , Aldeídos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Citocromo P-450 CYP4A/metabolismo , Etanol/sangue , Etanol/farmacocinética , Fígado Gorduroso/complicações , Fígado Gorduroso/dietoterapia , Flavonóis , Peróxido de Hidrogênio/sangue , Fígado/enzimologia , Fígado/metabolismo , Hepatopatias Alcoólicas/sangue , Hepatopatias Alcoólicas/complicações , Hepatopatias Alcoólicas/enzimologia , Masculino , Camundongos , NADPH Oxidase 4/metabolismo , Substâncias Protetoras/uso terapêutico , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Hepatology ; 64(4): 1057-71, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27302565

RESUMO

UNLABELLED: The spectrum of alcoholic liver disease (ALD) is a major cause of mortality with limited therapies available. Because alcohol targets numerous signaling pathways in hepatocytes and in immune cells, the identification of a master regulatory target that modulates multiple signaling processes is attractive. In this report, we assessed the role of spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, which has a central modulatory role in multiple proinflammatory signaling pathways involved in the pathomechanism of ALD. Using mouse disease models that represent various phases in the progression of human ALD, we found that alcohol, in all of these models, induced SYK activation in the liver, both in hepatocytes and liver mononuclear cells. Furthermore, significant SYK activation also occurred in liver samples and peripheral blood mononuclear cells of patients with ALD/alcoholic hepatitis compared to controls. Functional inhibition of SYK activation in vivo abrogated alcohol-induced hepatic neutrophil infiltration, resident immune cell activation, as well as inflammasome and extracellular signal-regulated kinase 1 and 2-mediated nuclear factor kappa B activation in mice. Strikingly, inhibition of SYK activation diminished alcohol-induced hepatic steatosis and interferon regulatory factor 3-mediated apoptosis. CONCLUSION: Our data demonstrate a novel, functional, and multicellular role for SYK phosphorylation in modulating immune cell-driven liver inflammation, hepatocyte cell death, and steatosis at different stages of ALD. These novel findings highlight SYK as a potential multifunctional target in the treatment of alcoholic steatohepatitis. (Hepatology 2016;64:1057-1071).


Assuntos
Morte Celular , Fígado Gorduroso/prevenção & controle , Hepatócitos/patologia , Inflamação/prevenção & controle , Hepatopatias Alcoólicas/enzimologia , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Quinase Syk/antagonistas & inibidores , Animais , Fígado Gorduroso/etiologia , Feminino , Humanos , Inflamação/etiologia , Hepatopatias Alcoólicas/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
17.
Alcohol Clin Exp Res ; 40(5): 988-99, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27062444

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor gamma (PPARγ) signaling has been shown to regulate lipogenesis and lipid accumulation. Previous studies have shown that hepatic PPARγ is up-regulated in steatotic liver of both animal and human. However, the effects of hepatic PPARγ signaling on alcoholic liver disease (ALD) remain elusive. METHODS: To determine the role of hepatic PPARγ signaling on ALD, wild-type (WT) and hepatocyte-specific PPARγ knockdown (PPARγ∆Hep) mice were fed a modified Lieber-DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 8 weeks to induce ALD. Blood parameters, hepatic steatosis, and inflammation were measured after 8-week alcohol feeding. RESULTS: Alcohol feeding to WT mice resulted in liver damage (alanine aminotransferase [ALT], 94.68 ± 17.05 U/L; aspartate aminotransferase [AST], 55.87 ± 11.29 U/L), which was significantly alleviated by hepatic PPARγ knockdown (ALT, 57.36 ± 14.98 U/L; AST, 38.06 ± 3.35 U/L). Alcohol feeding led to marked lipid accumulation and up-regulation of lipogenic genes including fatty acid transport protein 1 (FATP1), acetyl-CoA carboxylase (ACC), fatty acid synthase (FASN), lipin1 (LIPIN1), diacylglycerol acyltransferase 1 (DGAT1), and diacylglycerol acyltransferase 2 (DGAT2) in the livers of WT mice. Knockdown of hepatic PPARγ significantly alleviated alcohol-induced lipid accumulation and abolished the up-regulation of FASN, DGAT1, and DGAT2. Silencing of PPARγ in FL83B cells significantly decreased ethanol (EtOH)-, linoleic acid-, and EtOH plus linoleic acid-induced lipid accumulation. Knockdown of hepatic PPARγ also significantly reduced alcohol-induced inflammatory chemokine (monocyte chemotactic protein 1 [MCP1], keratinocyte-derived chemokine [KC], interferon gamma-induced protein 10 [IP-10]) and inflammatory infiltration (lymphocyte antigen 6 complex, locus G [Ly6G], and F4/80). CONCLUSIONS: The results suggest that hepatic PPARγ signaling contributes to alcohol-induced liver injury by promoting hepatic steatosis and inflammation.


Assuntos
Etanol/toxicidade , Fígado Gorduroso Alcoólico/metabolismo , Inflamação/metabolismo , Hepatopatias Alcoólicas/metabolismo , Fígado/metabolismo , PPAR gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acetil-CoA Carboxilase/biossíntese , Animais , Células Cultivadas , Quimiocinas/metabolismo , Diacilglicerol O-Aciltransferase/biossíntese , Ácido Graxo Sintases/biossíntese , Proteínas de Transporte de Ácido Graxo/biossíntese , Fígado Gorduroso Alcoólico/enzimologia , Técnicas de Silenciamento de Genes , Inflamação/enzimologia , Hepatopatias Alcoólicas/enzimologia , Masculino , Camundongos , Proteínas Nucleares/biossíntese , PPAR gama/deficiência , PPAR gama/genética , Fosfatidato Fosfatase/biossíntese , Regulação para Cima
18.
Oncotarget ; 7(14): 17681-98, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26769846

RESUMO

Chronic alcohol exposure increased hepatic receptor-interacting protein kinase (RIP) 3 expression and necroptosis in the liver but its mechanisms are unclear. In the present study, we demonstrated that chronic alcohol feeding plus binge (Gao-binge) increased RIP3 but not RIP1 protein levels in mouse livers. RIP3 knockout mice had decreased serum alanine amino transferase activity and hepatic steatosis but had no effect on hepatic neutrophil infiltration compared with wild type mice after Gao-binge alcohol treatment. The hepatic mRNA levels of RIP3 did not change between Gao-binge and control mice, suggesting that alcohol-induced hepatic RIP3 proteins are regulated at the posttranslational level. We found that Gao-binge treatment decreased the levels of proteasome subunit alpha type-2 (PSMA2) and proteasome 26S subunit, ATPase 1 (PSMC1) and impaired hepatic proteasome function. Pharmacological or genetic inhibition of proteasome resulted in the accumulation of RIP3 in mouse livers. More importantly, human alcoholics had decreased expression of PSMA2 and PSMC1 but increased protein levels of RIP3 compared with healthy human livers. Moreover, pharmacological inhibition of RIP1 decreased Gao-binge-induced hepatic inflammation, neutrophil infiltration and NF-κB subunit (p65) nuclear translocation but failed to protect against steatosis and liver injury induced by Gao-binge alcohol. In conclusion, results from this study suggest that impaired hepatic proteasome function by alcohol exposure may contribute to hepatic accumulation of RIP3 resulting in necroptosis and steatosis while RIP1 kinase activity is important for alcohol-induced inflammation.


Assuntos
Fígado Gorduroso/enzimologia , Hepatopatias Alcoólicas/enzimologia , Proteína Serina-Treonina Quinases de Interação com Receptores/biossíntese , Animais , Consumo Excessivo de Bebidas Alcoólicas/enzimologia , Consumo Excessivo de Bebidas Alcoólicas/patologia , Etanol/administração & dosagem , Proteínas Ativadoras de GTPase/biossíntese , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Sci Rep ; 6: 18685, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26725521

RESUMO

Activation of Kupffer cells (KCs) plays a central role in the pathogenesis of alcoholic liver disease (ALD). C57BL/6 mice fed EtOH-containing diet showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Since telomerase activation occurs at critical stages of myeloid and lymphoid cell activation, we herein investigated the role of telomerase reverse transcriptase (TERT), the determining factor of telomerase, in macrophage activation during ALD. In our study, TERT expression and telomerase activity (TA) were remarkably increased in liver tissue of EtOH-fed mice. Moreover, EtOH significantly up-regulated TERT in isolated KCs and RAW 264.7 cells and LPS induced TERT production in vitro. These data indicate that up-regulation of TERT may play a critical role in macrophages during ALD. Furthermore, loss- and gain-of-function studies suggested that TERT switched macrophages towards M1 phenotype by regulating NF-κB signaling, but had limited effect on M2 macrophages polarization in vitro. Additionally, PDTC, a chemical inhibitor of NF-κB, could dramatically down-regulate TERT expression and the hallmarks of M1 macrophages. Therefore, our study unveils the role of TERT in macrophage polarization and the cross-talk between TERT and p65, which may provide a possible explanation for the ethanol-mediated hepatic proinflammatory response and M1 macrophage polarization.


Assuntos
Células de Kupffer/fisiologia , Hepatopatias Alcoólicas/enzimologia , NF-kappa B/metabolismo , Telomerase/fisiologia , Animais , Polaridade Celular , Retroalimentação Fisiológica , Expressão Gênica , Lipopolissacarídeos/farmacologia , Fígado/enzimologia , Fígado/imunologia , Fígado/patologia , Hepatopatias Alcoólicas/imunologia , Hepatopatias Alcoólicas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais
20.
Duodecim ; 132(18): 1688-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29188945

RESUMO

Owing to laboratory automation, elevated liver enzymes are increasingly found in persons who are either asymptomatic or present with vague symptoms. The majority of slightly elevated liver enzymes detected in Finland result from excessive alcohol use, a drug or non-alcoholic fatty liver disease. On the other hand, disregarding pathological liver enzymes may lead to a delay of the treatment of a liver disease. In addition to careful anamnesis and status, systematic targeting of investigations is often the quickest way to correct diagnosis and assessment of need for treatment.


Assuntos
Hepatopatias/diagnóstico , Hepatopatias/enzimologia , Fígado Gorduroso/enzimologia , Finlândia , Humanos , Hepatopatias Alcoólicas/enzimologia , Testes de Função Hepática , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...